
Load Analysis

Casa Grande Main Facility
Developed by: Jeff MacKinnon

Reviewed by: Sam Terry

• Project Number 2325
• November 28, 2023

Dependancies

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Source Information

The first step is to combine the meter information provided by Lucid. This data was provided
by Chris Kim of Lucid. The information was uploaded to Sharefile on November 22, 2023.

There were a number of .CSV files provided. The MeterInformation.csv is a single file with all
the lines from the provided files.

step through all the meter files and create a single CSV. This should only be done once.

import os

import glob

meter_info = os.path.exists('MeterInformation.csv')

if meter_info == False:

import pandas as pd

files = glob.glob('rawmeter/*.csv')

df = pd.concat(

[pd.read_csv(fp,) for fp in files], ignore_index=True)

df.to_csv('MeterInformation.csv')

print('MeterInformation.csv created.')

else:

print('The meter information file already exists. If it needs to be updated, rename or delete the

The meter information file already exists. If it needs to be updated, rename or dele

te the existing file.

raw = pd.read_csv('MeterInformation.csv',

#encoding = 'cp1252', # This is the encoding that PVsyst spits out

skip_blank_lines=True, # I don't want blank rows.

#header = header_row,

#skiprows = (1-9,11),

In []:

In []:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

1 of 36 2023-12-11, 4:33 p.m.

parse_dates=['Timestamp UTC','Timestamp'],

#index_col='date',

)

The critical information that we are looking at are in the "Measurement" column.

measurements = raw.drop_duplicates(subset=['Measurement'])

#print(measurements.Measurement)

Initial check to see that the data shows

To ensure that there are no gaps in the information we select a measurment, in this case
Apparent Power Mean, and plot.

grouped = raw.groupby(raw['Measurement'])

Apparent_Power_raw = grouped.get_group('Apparent Power Mean')

Apparent_Power_raw.plot(

x="Timestamp",

y="Value",

title='Apparent Power Mean',

#xlabel= 'day',

#ylabel='kW to the grid',

kind="line",

figsize=(10,8),

)

plt.savefig('report/images/provided_values_apparent_power.png', format='png')

plt.show()

In []:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

2 of 36 2023-12-11, 4:33 p.m.

Initial data cleaning

Start cleaning the raw data by removing the columns we won't be using and then clearing
any duplicates.

df = raw.drop(['Timestamp UTC','Unit'], axis=1) # I want to remove a timestamp to have a single index

df = df.drop_duplicates(subset=['Timestamp','Value','Source','Measurement'], keep='last'

Creating a Pivot Table

Pivot the dataframe so that everything has columns and then make the timestamp the index.

Next, create a zipfile of the data that will be used to as part of this analysis

df = df.pivot(index='Timestamp', columns=['Source','Measurement']) # Pivot so that the timestamp is th

compression_opts = dict(method='zip',

archive_name='2325-pivot_data.csv')

df.to_csv('2325-pivot_data.zip', index=True,

compression=compression_opts)

df

In []:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

3 of 36 2023-12-11, 4:33 p.m.

Source

Measurement
Voltage

A-N
Voltage

B-N
Voltage

C-N
Voltage

A-B
Voltage

B-C
Voltage

C-A

C1
Current

A

Timestamp

2022-01-01
00:15:00

0.0 1.0 2.0 3.0 4.0 5.0 6.0

2022-01-01
00:30:00

38.0 39.0 40.0 41.0 42.0 43.0 44.0

2022-01-01
00:45:00

76.0 77.0 78.0 79.0 80.0 81.0 82.0

2022-01-01
01:00:00

114.0 115.0 116.0 117.0 118.0 119.0 120.0

2022-01-01
01:15:00

152.0 153.0 154.0 155.0 156.0 157.0 158.0

...

2023-11-22
11:15:00

9418034.0 9418035.0 9418036.0 9418037.0 9418038.0 9418039.0 9418040.0

2023-11-22
11:30:00

9418072.0 9418073.0 9418074.0 9418075.0 9418076.0 9418077.0 9418078.0

2023-11-22
11:45:00

9418110.0 9418111.0 9418112.0 9418113.0 9418114.0 9418115.0 9418116.0

2023-11-22
12:00:00

9418148.0 9418149.0 9418150.0 9418151.0 9418152.0 9418153.0 9418154.0

2023-11-22
12:15:00

9418186.0 9418187.0 9418188.0 9418189.0 9418190.0 9418191.0 9418192.0

66764 rows × 562 columns

Removing the Data that we won't be using

From here we will continue to condition the dataframe to make it easier to work with.

Clean the dataframe to include the values we want, and rename the "high" values from the
main meter to be "instantaneous" to match the shark meter values

df_conditioned = df.drop(columns=[

#'Apparent Power Low',

'Apparent Power Mean',

#'Block Demand Apparent Power Total',

Out[]:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

4 of 36 2023-12-11, 4:33 p.m.

'Reactive Power Low',

'Reactive Power Mean',

#'Block Demand Reactive Power',

#'Block Demand Real Power',

'Real Power Low',

'Power Factor Lagging High',

'Power Factor Lagging Low',

'Power Factor Lagging Mean',

'Power Factor Leading High',

'Power Factor Leading Low',

'Power Factor Leading Mean',

'Voltage A-B High',

'Voltage A-B Mean',

'Voltage A-B Low', # Will use the "mean" low as the base voltage for analysis

'Voltage B-C High',

'Voltage B-C Low',

'Voltage B-C Mean',

'Voltage C-A High',

'Voltage C-A Low',

'Voltage C-A Mean',

'Voltage L-L Avg High',

'Voltage L-L Avg Mean',

'Voltage L-L Avg Low',

'Voltage A-N', # The shark meters included both L-N and L-L values

'Voltage B-N',

'Voltage C-N',

'Real Power A',

'Real Power B',

'Real Power C',

'Voltage B-C',

'Voltage C-A',

'Current A',

'Current B',

'Current C',

'Current N',

'Current A High',

'Current A Low',

'Current A Mean',

'Current B High',

'Current B Low',

'Current B Mean',

'Current C High',

'Current C Low',

'Current C Mean',

'C1 Current A',

'C1 Current B',

'C1 Current C',

'C2 Current A',

'C2 Current B',

'C2 Current C',

'C3 Curent A', # Spelled wrong because that's how its spelled in the source data

'C3 Current B',

'C3 Current C',

'C4 Curent A', # Spelled wrong because that's how its spelled in the source data

'C4 Current B',

'C4 Current C',

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

5 of 36 2023-12-11, 4:33 p.m.

'C5 Curent A', # Spelled wrong because that's how its spelled in the source data

'C5 Current B',

'C5 Current C',

'C6 Curent A', # Spelled wrong because that's how its spelled in the source data

'C6 Current B',

'C6 Current C',

'C7 Curent A',

'C7 Current B',

'C7 Current C',

'C8 Curent A',

'C8 Current B',

'C8 Current C',

],

level=2)

df_conditioned = df_conditioned.rename({'Apparent Power High':'Apparent Power',

'Reactive Power High':'Reactive Power',

'Real Power High':'Real Power',

'Voltage L-L Avg Low':'Voltage', # Making the Voltage the Same

'Voltage A-B':'Voltage', #

},

level=2,

axis=1)

df_conditioned = df_conditioned['Value'] # Strips the value row making the dataframe simplier

df_conditioned = df_conditioned.loc['2022-07-01 00:00:00': '2023-11-21 23:45:00']

#

Create a .zip file of the conditioned table.

compression_opts = dict(method='zip',

archive_name='2325-conditioned_data.csv')

df_conditioned.to_csv('2325-conditioned_data.zip', index=True,

compression=compression_opts)

df_conditioned

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

6 of 36 2023-12-11, 4:33 p.m.

Source HANNA_ROAD.SHARK_PM2

Measurement Voltage
C1 kW 3

Phase
Total

C2 kW 3
Phase
Total

C3 kW 3
Phase
Total

C4 kW 3
Phase
Total

C5 kW 3
Phase
Total

C6 kW 3
Phase
Total

Timestamp

2022-07-01
00:00:00

NaN NaN NaN NaN NaN NaN NaN

2022-07-01
00:15:00

NaN NaN NaN NaN NaN NaN NaN

2022-07-01
00:30:00

NaN NaN NaN NaN NaN NaN NaN

2022-07-01
00:45:00

NaN NaN NaN NaN NaN NaN NaN

2022-07-01
01:00:00

NaN NaN NaN NaN NaN NaN NaN

...

2023-11-21
22:45:00

484.199005 90.561203 143.102703 34.741922 316.257719 24.934873 31.452576

2023-11-21
23:00:00

486.479492 39.883285 64.000871 27.148957 210.999234 25.022152 27.463848

2023-11-21
23:15:00

483.316833 83.499773 53.611617 20.290480 76.538195 11.174855 29.243945

2023-11-21
23:30:00

483.531036 84.635617 136.490484 29.779871 71.920156 11.120963 23.788271

2023-11-21
23:45:00

482.226196 42.134477 128.760461 74.590539 225.815656 11.130894 23.856523

49211 rows × 78 columns

df_HANNA = df_conditioned['HANNA_ROAD.SHARK_PM200_01']

df_MainA = df_conditioned['LUCID01.PRIMARY_SWGR_MAIN']

df_1302 = df_conditioned['NORTH_PAINT.1302_SPM']

df_1201 = df_conditioned['BIW.1201_SPM']

df_1304 = df_conditioned['WEST_PAINT.1304_SPM']

df_13SP = df_conditioned['NORTH_PAINT.13SP_SPM']

df_1202 = df_conditioned['BIW.1202_SPM']

df_1305 = df_conditioned['WEST_PAINT.1305_SPM']

df_1902 = df_conditioned['CUP.1902_SPM']

df_1903 = df_conditioned['CUP.1903_SPM']

df_1901 = df_conditioned['CUP.1901_SPM']

df_19SP = df_conditioned['CUP.19SP_SPM']

df_1301 = df_conditioned['NORTH_PAINT.1301_SPM']

df_1303 = df_conditioned['NORTH_PAINT.1303_SPM']

Out[]:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

7 of 36 2023-12-11, 4:33 p.m.

#df_MainA

Q4'23/Q1'24 Load Analysis
The factors that we are accounting for with regards to the load growth from January 2023 to
January 2024 are:

• The YoY growth from the first two weeks in November 2022 and November 2023.
• The expected additional load for Stamping
• Additional HVAC Demand for North Building

For this part of the analysis we will only look at the main meter.

This code is specifically to ensure that the graphs all have the same axis and look

plot_y_min = 1000

plot_y_max_base = 10000

plot_y_max_fans = 14000

plot_y_abs_max = 20000

df_nov22 = df_conditioned.loc['2022-11-01 00:00:00': '2022-11-14 23:45:00']

df_nov23 = df_conditioned.loc['2023-11-01 00:00:00': '2023-11-14 23:45:00']

df_MainA_nov22 = df_nov22['LUCID01.PRIMARY_SWGR_MAIN']

df_MainA_nov23 = df_nov23['LUCID01.PRIMARY_SWGR_MAIN']

Make the comparison plot

fig, (ax1, ax2) = plt.subplots(2,1,figsize=(10,8))

ax1.plot(df_nov23.index, df_MainA_nov23['Apparent Power'], color='black', label='Nov 23 Demand'

ax1.set_xlabel('Time')

ax1.set_ylabel('kVA')

ax1.set_ylim(plot_y_min,plot_y_max_base)

ax1.legend()

ax2.plot(df_nov22.index, df_MainA_nov22['Apparent Power'], color='red', label='Nov 22 Demand'

ax2.set_xlabel('Time')

ax2.set_ylabel('kVA')

ax2.set_ylim(plot_y_min,plot_y_max_base)

ax2.legend()

plt.savefig('report/images/yoy-load_growth.png', format='png')

In []:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

8 of 36 2023-12-11, 4:33 p.m.

At this point we will assume that the day of the week average increase can be applied to the
values from December '22 and January '23.

From there we will add the expected new loads for December, January and February to have
a prediction of the new expected peaks.

Temperature and its affect on demand
Temperature has an extreme impact on the demand profile at the plant. There is a very large
HVAC load to account for the cooling throughout the facility.

To determine the base load without the HVAC, without having the building automation
system, or an operational SCADA system that monitors this information is difficult.

To get a sense of the magnitude of this load we will compare the temperature and demand
during the first two weeks in September 2023 and the first two weeks in November.

The exact method is to determine the difference in demand and compare that to the
difference in temperature. We will then determine if there is a way to add this information to
the forecasted demand model.

meter_info = os.path.exists('weatherinformation.csv')In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

9 of 36 2023-12-11, 4:33 p.m.

if meter_info == False:

import pandas as pd

files = glob.glob('rawweather/*.csv')

df = pd.concat(

[pd.read_csv(fp,) for fp in files], ignore_index=True)

df.to_csv('weatherinformation.csv')

print('weatherinformation.csv created.')

else:

print('The weather information file already exists. If it needs to be updated, rename or delete th

weather = pd.read_csv('weatherinformation.csv',

#encoding = 'cp1252', # This is the encoding that PVsyst spits out

skip_blank_lines=True, # I don't want blank rows.

#header = header_row,

#skiprows = (1-9,11),

parse_dates=['datetime'],

index_col='datetime',

)

weather = weather.loc[:, ~weather.columns.str.contains('^Unnamed')] # drops any Unnamed columns

#weather

The weather information file already exists. If it needs to be updated, rename or de

lete the existing file.

Set up the warm analysis frame

warm_analysis_start = '2023-09-01 00:00:00'

warm_analysis_end = '2023-09-14 23:00:00'

warm_analysis_power = df_MainA.loc[warm_analysis_start : warm_analysis_end]

warm_analysis_weather = weather.loc[warm_analysis_start : warm_analysis_end]

fig, ax = plt.subplots(figsize=(10,8))

fig.subplots_adjust(right=0.75)

twin1 = ax.twinx()

#twin2 = ax.twinx()

Offset the right spine of twin2. The ticks and label have already been

placed on the right by twinx above.

#twin2.spines.right.set_position(("axes", 1.2))

p1, = ax.plot(warm_analysis_power.index, warm_analysis_power['Apparent Power'], color

p2, = twin1.plot(warm_analysis_weather.index, warm_analysis_weather['temp'], color=

#ax.set_xlim(0, 2)

ax.set_ylim(0, 14000)

twin1.set_ylim(0, 50)

ax.set_xlabel("Date")

ax.set_ylabel("kVA")

twin1.set_ylabel("Temperature")

In []:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

10 of 36 2023-12-11, 4:33 p.m.

ax.yaxis.label.set_color(p1.get_color())

twin1.yaxis.label.set_color(p2.get_color())

tkw = dict(size=4, width=1.5)

ax.tick_params(axis='y', colors=p1.get_color(), **tkw)

twin1.tick_params(axis='y', colors=p2.get_color(), **tkw)

ax.tick_params(axis='x', **tkw)

ax.legend(handles=[p1, p2])

plt.savefig('report/images/power_demand_vs_temperature-Sept.png', format='png')

plt.show()

This shows a strong correlation between temperature and power. Lets do the same during a
cooler period where a similar amount of equipment is connected.

setup the cool analysis frame

cool_analysis_start = '2023-11-01 00:00:00'

cool_analysis_end = '2023-11-14 23:45:00'

cool_analysis_power = df_MainA.loc[cool_analysis_start : cool_analysis_end]

cool_analysis_weather = weather.loc[cool_analysis_start : cool_analysis_end]

fig, ax = plt.subplots(figsize=(10,8))

In []:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

11 of 36 2023-12-11, 4:33 p.m.

fig.subplots_adjust(right=0.75)

twin1 = ax.twinx()

#twin2 = ax.twinx()

Offset the right spine of twin2. The ticks and label have already been

placed on the right by twinx above.

#twin2.spines.right.set_position(("axes", 1.2))

p1, = ax.plot(cool_analysis_power.index, cool_analysis_power['Apparent Power'], color

p2, = twin1.plot(cool_analysis_weather.index, cool_analysis_weather['temp'], color=

#ax.set_xlim(0, 2)

ax.set_ylim(0, 14000)

twin1.set_ylim(0, 50)

ax.set_xlabel("Date")

ax.set_ylabel("kVA")

twin1.set_ylabel("Temperature")

ax.yaxis.label.set_color(p1.get_color())

twin1.yaxis.label.set_color(p2.get_color())

tkw = dict(size=4, width=1.5)

ax.tick_params(axis='y', colors=p1.get_color(), **tkw)

twin1.tick_params(axis='y', colors=p2.get_color(), **tkw)

ax.tick_params(axis='x', **tkw)

ax.legend(handles=[p1, p2])

plt.savefig('report/images/power_demand_vs_temperature-Nov.png', format='png')

plt.show()

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

12 of 36 2023-12-11, 4:33 p.m.

There is still a correlation. On cooler days it appears that the demand peak is earlier in the
day compared to the peak temperature, and then it drops with the temperature to a
minimum base load between 4 and 5 MVA.

From these graphs we can determine the base load, calculated below to be the average of
the bottom 10% of readings.

bottom_10per = len(warm_analysis_power.index)*0.1

warm_base_n = warm_analysis_power.nsmallest(n=int(bottom_10per),columns=['Apparent Power'

warm_base = warm_base_n['Apparent Power'].mean()

bottom_10per = len(cool_analysis_power.index)*0.1

cool_base_n = cool_analysis_power.nsmallest(n=int(bottom_10per),columns=['Apparent Power'

cool_base = cool_base_n['Apparent Power'].mean()

print('The base load during the warm period is ' + str(round(warm_base,2)) + 'kVA.')

print('The base load during the cool period is ' + str(round(cool_base,2)) + 'kVA.')

The base load during the warm period is 5702.26kVA.

The base load during the cool period is 4868.41kVA.

During the cool period, we can expect that this is the least amount that the HVAC can be
operating.

In fact, the days that the temperature peaks around 25C, there is very little peak to the

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

13 of 36 2023-12-11, 4:33 p.m.

demand graph. Therefore we could assume that it is during those days that the base
production load can be calculated. For this analysis we will use November 8, 9, and 10th.
These are a Wednesday, Thursday and Friday.

To get a clean number we will take the average of the top 10% of the demand during this
period. This will be lower than the actual demand and therefore should be more
conservative, while also smoothing any startup vs running load requirements.

cool_production_peak = cool_analysis_power.loc['2023-11-08 00:00:00' : '2023-11-10 23:45:00'

top_10per = len(cool_production_peak.index)*0.1

cool_production_peak_n = cool_production_peak.nlargest(n=int(top_10per), columns=['Apparent Power'

cool_production_peak_demand = cool_production_peak_n['Apparent Power'].mean()

print('The max production demand during this period was ' + str(round(cool_production_peak_demand

production_demand = cool_production_peak_demand

The max production demand during this period was 7075.9kVA.

With this value we can assume that any demand over this value is based on the outside
temperature. To calculate this we will subtract the production base demand from the total
demand. Then divide that by the temperature. That will give use a kVA/C value that can be
used in the demand forecast looking further into the system.

warm_analysis_power['Calc HVAC'] = warm_analysis_power['Apparent Power'] - production_demand

warm_analysis_power['temp'] = warm_analysis_weather['temp']

temp_warm_analysis = warm_analysis_power[warm_analysis_power['temp'].notna()]

temp_warm_analysis['kVA_C'] = temp_warm_analysis['Apparent Power'] / temp_warm_analysis

#temp_warm_analysis['kVA_C']

print(temp_warm_analysis['kVA_C'].mean())

233.21688423398362

In []:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

14 of 36 2023-12-11, 4:33 p.m.

C:\Users\jeff\AppData\Local\Temp\ipykernel_15796\2331834001.py:1: SettingWithCopyWar

ning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u

ser_guide/indexing.html#returning-a-view-versus-a-copy

 warm_analysis_power['Calc HVAC'] = warm_analysis_power['Apparent Power'] - product

ion_demand

C:\Users\jeff\AppData\Local\Temp\ipykernel_15796\2331834001.py:2: SettingWithCopyWar

ning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u

ser_guide/indexing.html#returning-a-view-versus-a-copy

 warm_analysis_power['temp'] = warm_analysis_weather['temp']

C:\Users\jeff\AppData\Local\Temp\ipykernel_15796\2331834001.py:4: SettingWithCopyWar

ning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u

ser_guide/indexing.html#returning-a-view-versus-a-copy

 temp_warm_analysis['kVA_C'] = temp_warm_analysis['Apparent Power'] / temp_warm_ana

lysis['temp']

graph the new analysis values

fig, ax = plt.subplots(figsize=(16,8))

fig.subplots_adjust(right=0.75)

twin1 = ax.twinx()

#twin2 = ax.twinx()

Offset the right spine of twin2. The ticks and label have already been

placed on the right by twinx above.

#twin2.spines.right.set_position(("axes", 1.2))

p1, = ax.plot(temp_warm_analysis.index, temp_warm_analysis['kVA_C'], color='black',

p2, = twin1.plot(temp_warm_analysis.index, temp_warm_analysis['temp'], color='red',

#ax.set_xlim(0, 2)

ax.set_ylim(0, 400)

twin1.set_ylim(0, 50)

ax.set_xlabel("Date")

ax.set_ylabel("kVA/C")

twin1.set_ylabel("Temperature")

ax.yaxis.label.set_color(p1.get_color())

twin1.yaxis.label.set_color(p2.get_color())

tkw = dict(size=4, width=1.5)

ax.tick_params(axis='y', colors=p1.get_color(), **tkw)

twin1.tick_params(axis='y', colors=p2.get_color(), **tkw)

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

15 of 36 2023-12-11, 4:33 p.m.

ax.tick_params(axis='x', **tkw)

ax.legend(handles=[p1, p2])

plt.savefig('report/images/KVA_per_C-Analysis-Sept.png', format='png')

plt.show()

print('The kVA/C skew is ' + str(temp_warm_analysis['kVA_C'].skew()))

print('The kVA/C median is ' + str(temp_warm_analysis['kVA_C'].median()))

print('The kVA/C mean is ' + str(temp_warm_analysis['kVA_C'].mean()))

print('The kVA/C standard deviation is ' + str(temp_warm_analysis['kVA_C'].std()))

print('The kVA/C min is ' + str(temp_warm_analysis['kVA_C'].min()))

print('The kVA/C max is ' + str(temp_warm_analysis['kVA_C'].max()))

#print(temp_warm_analysis['kVA_C'].max() - temp_warm_analysis['kVA_C'].mean())

#print(temp_warm_analysis['kVA_C'].mean() - temp_warm_analysis['kVA_C'].min())

The kVA/C skew is 0.33272830900838163

The kVA/C median is 233.2273214710076

The kVA/C mean is 233.21688423398362

The kVA/C standard deviation is 25.947847945182424

The kVA/C min is 175.0811767578125

The kVA/C max is 315.0097249348958

Without more information to this is the closest that we can get to. The median and mean
values are close and the max/min value is within 50% of the value. For our forecasting
purposes, I think that it makes sense to consider that the HVAC demand will be
approximately 250kVA/degree C over 25C. That means that when the outside temperature is
over 25C then we should consider adding additional demand to our forecasted demand

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

16 of 36 2023-12-11, 4:33 p.m.

Calculate expected new loads
Currently we are expecting that most of South will be coming online.

First we calculate the existing diveristy factor. This is based on the "Final" panel schedules
provided during the Phase 1 Arc Flash Analysis. They were sent from Lucid by email on or
around April 9, 2021

We are assuming that South will be 100% online during August.

Calculate load increase, between 2023 and 2022

safety_factor = 0.2

load_increase = (df_MainA_nov23['Apparent Power'].mean()/df_MainA_nov22['Apparent Power'

print("The mean average in the first two weeks of November 2022 is " + str(df_MainA_nov22

The mean average in the first two weeks of November 2022 is 2640.9917756035234kVA, a

nd the mean average in November 2023 is 6030.846934363955kVA. This represents an inc

rease of 2.7402646188032644.

Calculation method
The first order calculation will be to consider the average demand in November in 2022 and
2023. This will help start to give an understanding if there is a risk of overload in the coming
months, however it will not take into account the obvious cyclical nature in the November
2023 demand.

We are assuming that the South Loads reflected in the Nov'23 graph will not increase
during the study period.

The North is the Stamping system, their expected demand is for commissioning starting in
November.

Stamping Load

The Stamping load has been provided by Chris in an email on May 12:

Tandem Line:

• Needed 11/8 (11SO Control Power) - Approx. 650kVA (This is 50% of 1284 kVA)
• Needed 12/6 (12SO, Drive Power) – Approx. 800kVA (This is 50% of 1550kVA
• Needed 12/8 (CBF, Automation) – Approx. 309kVA
• Needed 11/17 (FOL, Automation) – Approx. 240kVA
• Needed 11/24 (EOL, Automation) – Approx. 145kVA

Tryout Press:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

17 of 36 2023-12-11, 4:33 p.m.

• Needed 11/18 General) – Approx. 36kVA
• Needed 11/14 (Cushion) – Approx. 91kVA
• Needed 12/1 12SO Drives) – Approx. 520kVA)

Laser Blanking

• Needed 12/1 Coil Line & Stacker) – Approx. 508kVA
• Needed 12/1 (Laser) – Approx. 241kVA

**Tool & die area **

• Needed 1/1/2024 (General) – Approx. 300kVA

Currently we are assuming that these loads are additive, so everything that is needed in
November will be assumed that it will be online all month.

For ease of calculation, and to assume worse case, we are assuming that all the stamping
demand will be online starting December 2022.

stamping_connected = 650+800+309+240+145+36+91+520+508+241+300

stamping_diversity = 1

north_connected = stamping_connected * stamping_diversity

With the YoY load_increase and expected new load in north_connected we can
estimate the demand in Dec'23 through to March'24

analysis_period_str = '2022-12-01 00:00:00'

analysis_period_end = '2023-03-30 23:45:00'

df_MainA_analysis = df_conditioned.loc[analysis_period_str:analysis_period_end]['LUCID01.PRIMARY_SWG

df_MainA_analysis['Forecast Demand'] = df_MainA_analysis['Apparent Power'] * load_increase

df_MainA_analysis['Forecast Demand'].max()

16008.660177431755

Comparing the 2022/23 demand with the forecasted 2023/24
Demand

Looking into Q1'24 we can show what we are forecasting the demand will be based on the
model developed above. For Q1 the temperature doesn't typically go above 25C, and we will
not consider increasing the expected demand at this time.

In []:

In []:

Out[]:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

18 of 36 2023-12-11, 4:33 p.m.

Make the comparison plot

fig, (ax1, ax2) = plt.subplots(2,1,figsize=(10,8))

ax1.plot(df_MainA_analysis.index, df_MainA_analysis['Apparent Power'], color='black'

ax1.set_xlabel('Time')

ax1.set_ylabel('kVA')

ax1.set_ylim(plot_y_min,plot_y_max_fans)

ax1.legend()

ax2.plot(df_MainA_analysis.index, df_MainA_analysis['Forecast Demand'], color='red',

ax2.set_xlabel('Time')

ax2.set_ylabel('kVA')

ax2.set_ylim(plot_y_min,plot_y_max_fans)

ax2.legend()

plt.savefig('report/images/Load_Projection_Q124.png', format='png')

With the first order load forecast it appears that there are no real issues until April '23.

To be careful, we will check the largest difference between the 15min Low and High
Apparent Power, only the high has been used for the analysis thus far. This difference will
represent the largest load change that we can expect on the system.

df_MainA_analysis['Difference'] = df_MainA_analysis['Apparent Power'] - df_MainA_analysis

largest_load = df_MainA_analysis['Difference'].max()

max_demand = df_MainA_analysis['Forecast Demand'].max() + largest_load

In []:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

19 of 36 2023-12-11, 4:33 p.m.

print('The max load increase that is represented in the difference between the 15min high and low is '

if max_demand > plot_y_max_fans:

print('This new demand is ' + str(round(max_demand - plot_y_max_fans, 2)) + 'kVA greater than the

else:

print('This new demand is within the fan rating of the existing transformer.')

The max load increase that is represented in the difference between the 15min high a

nd low is 1988.14kVA. When this is added to the peak forecasted demand, the new maxi

mum forecased demand is 17996.8kVA.

This new demand is 3996.8kVA greater than the fan rating of the existing transforme

r.

Using the new max load increase as the new demand, we can graph them to see if this will
be a challenge.

Make the comparison plot

fig, (ax1, ax2) = plt.subplots(2,1,figsize=(10,8))

ax1.plot(df_MainA_analysis.index, df_MainA_analysis['Forecast Demand'] + df_MainA_analysis

ax1.set_xlabel('Time')

ax1.set_ylabel('kVA')

ax1.set_ylim(plot_y_min,plot_y_max_fans)

ax1.legend()

ax2.plot(df_MainA_analysis.index, df_MainA_analysis['Forecast Demand'], color='red',

ax2.set_xlabel('Time')

ax2.set_ylabel('kVA')

ax2.set_ylim(plot_y_min,plot_y_max_fans)

ax2.legend()

plt.savefig('report/images/Demand_Projection_Q124.png', format='png')

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

20 of 36 2023-12-11, 4:33 p.m.

In the black graph above, we can see the areas that the transformer will be over its fan
rating, however it is only for very short periods of time, which is likely to be managed with
production scheduling.

Transformer Capacity and Temperature Derating
To ensure that the liklihood of derating based on temperature during the analysis period is
low, we have completed an hourly temperature analysis using data from VisualCrossing.

Weather data manipulation

df_weather = weather[analysis_period_str:analysis_period_end].copy()

df_weather['24h_temp'] = df_weather['temp'].rolling(24).mean()

fig, ax1 = plt.subplots(figsize=(10,8))

plt.plot(df_weather.index, df_weather['temp'], color='red', label='Temperature')

plt.plot(df_weather.index, df_weather['24h_temp'], color='black', label='24h Average Temperature'

plt.legend()

plt.title('Hourly Temperature - Casa Grande, AZ')

plt.xlabel('Time')

plt.ylabel('deg C')

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

21 of 36 2023-12-11, 4:33 p.m.

https://www.visualcrossing.com/weather/weather-data-services#
https://www.visualcrossing.com/weather/weather-data-services#

plt.savefig('report/images/hourly_temperature_casa_grande_2023_Q1.png', format='png'

plt.show()

print('The max temperature is ' + str(df_weather['temp'].max()) + ' degC, ' + 'with the highest 24h av

The max temperature is 27.8 degC, with the highest 24h average being 19.0 degC.

The highest rolling 24h average temperature is less than 30C and therefore the transformer
is unlikely to need to be derated as part of the analysis over the analysis period.

Transformer Protection and Tripping
Something that we haven't addressed yet is the existing overload and overcurrent (50/51)
protection for the Main service and service transformer. There is a chance that even if the
transformer isn't overloaded, being close to the transformer rating, for a long period, may
cause the protection to activate.

This next part of the analysis will review that.

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

22 of 36 2023-12-11, 4:33 p.m.

Above is the TCC for the switchyard transformer protection and the main 12.47kV breaker in
E-House A.

The pickup for these breakers are:

• 351S - 174A @ 69kV
• 751T - 816A @ 12.47kV
• 351S/A - 462A @ 12.47kV (E-House A Main)

The 10MVA transformer full-load amps (FLA) is 462.99A @ 12.47kV, this is the limiting factor
for the E-House A main breaker. The other breakers are set to both protect that transformer
from damage and coordinate with the E-House A breaker.

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

23 of 36 2023-12-11, 4:33 p.m.

These settings are based on the sensed current, and will represent a range of MVA.

print('The recorded min voltage is ' + str(round(df_MainA_analysis['Voltage'].min(),

The recorded min voltage is 12291.07V and the max is 12889.1V.

To calculate the least MVA values, that match the current settings, we will use the minimum
recorded voltage.

Calculate the MVA rating of the protection settings, at low system voltage, to match the rest of the

import math

voltage = df_MainA_analysis['Voltage'].min()

mva_351S = math.sqrt(3) * voltage * (69/12.47) * 174 # need to reflect the 69kV to the 12.47kV system.

mva_751T = math.sqrt(3) * voltage * 816

mva_EHouseA = math.sqrt(3) * voltage * 462

print(mva_351S/1000000)

print(mva_751T/1000000)

print(mva_EHouseA/1000000)

Calculate the max demand currents at low voltage for later in the analysis

max_load_current = (df_MainA_analysis['Forecast Demand'].max()*1000)/(math.sqrt(3)*

max_demand_current = ((df_MainA_analysis['Forecast Demand'].max() + largest_load)*1000

print(max_demand_current)

print(max_load_current)

20.496621675430628

17.37162950114758

9.835407879326203

845.3662710819922

751.97704993198

With the max MVA that the current breaker settings will accomodate calculated, we will
compare them to the forecasted values, starting with the E-House A Main Breaker.

Evaluate the E-House A Breaker at low voltage

if mva_EHouseA/1000 < df_MainA_analysis['Forecast Demand'].max():

print('The E-House A breaker has a high risk of nuance tripping. The forecasted demand is higher t

elif mva_EHouseA/1000 < max_demand:

print('The E-House A breaker has a risk of nuance tripping. The forecasted demand is higher than t

else:

print('The E-House A breaker has a low risk of nuance tripping.')

Evaluate the 751T breaker at low voltage

if mva_751T/1000 < df_MainA_analysis['Forecast Demand'].max():

print('The 751T breaker has a high risk of nuance tripping. The forecasted demand is higher than t

elif mva_751T/1000 < max_demand:

print('The 751T breaker has a risk of nuance tripping. The forecasted demand is higher than the br

else:

In []:

In []:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

24 of 36 2023-12-11, 4:33 p.m.

print('The 751T breaker has a low risk of nuance tripping.')

#Evaluate the 351S breaker at low voltage

if mva_351S/1000 < df_MainA_analysis['Forecast Demand'].max():

print('The 351S breaker has a high risk of nuance tripping. The forecasted demand is higher than t

elif mva_351S/1000 < max_demand:

print('The 351S breaker has a risk of nuance tripping. The forecasted demand is higher than the br

else:

print('The 351S breaker has a low risk of nuance tripping.')

The E-House A breaker has a high risk of nuance tripping. The forecasted demand is h

igher than the breaker setting at 12.29kV.

The 751T breaker has a risk of nuance tripping. The forecasted demand is higher than

the breaker setting at 12.29kV.

The 351S breaker has a low risk of nuance tripping.

Based on this analysis we need to determine strategies to either modify the breaker settings,
or control the load during low voltage events.

To determine if that is a viable option, lets do the same analysis, but with the high voltage to
determine if the risk of nuance tripping lowers.

#Evaluate the breakers at high voltage.

voltage_h = df_MainA_analysis['Voltage'].max()

mva_351S_vh = math.sqrt(3) * voltage_h * (69/12.47) * 174 # need to reflect the 69kV to the 12.47kV sy

mva_751T_vh = math.sqrt(3) * voltage_h * 816

mva_EHouseA_vh = math.sqrt(3) * voltage_h * 462

Evaluate the E-House A Breaker at low voltage

if mva_EHouseA_vh/1000 < df_MainA_analysis['Forecast Demand'].max():

print('The E-House A breaker has a high risk of nuance tripping. The forecasted demand is higher t

elif mva_EHouseA_vh/1000 < df_MainA_analysis['Forecast Demand'].max() + max_demand:

print('The E-House A breaker has a risk of nuance tripping. The forecasted demand is higher than t

else:

print('The E-House A breaker has a low risk of nuance tripping.')

Evaluate the 751T breaker at low voltage

if mva_751T_vh/1000 < df_MainA_analysis['Forecast Demand'].max():

print('The 751T breaker has a high risk of nuance tripping. The forecasted demand is higher than t

elif mva_751T_vh/1000 < df_MainA_analysis['Forecast Demand'].max() + max_demand:

print('The 751T breaker has a risk of nuance tripping. The forecasted demand is higher than the br

else:

print('The 751T breaker has a low risk of nuance tripping.')

#Evaluate the 351S breaker at low voltage

if mva_351S_vh/1000 < df_MainA_analysis['Forecast Demand'].max():

print('The 351S breaker has a high risk of nuance tripping. The forecasted demand is higher than t

elif mva_351S_vh/1000 < df_MainA_analysis['Forecast Demand'].max() + max_demand:

print('The 351S breaker has a risk of nuance tripping. The forecasted demand is higher than the br

else:

print('The 351S breaker has a low risk of nuance tripping.')

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

25 of 36 2023-12-11, 4:33 p.m.

The E-House A breaker has a high risk of nuance tripping. The forecasted demand is h

igher than the breaker setting at 12.89kV.

The 751T breaker has a risk of nuance tripping. The forecasted demand is higher than

the breaker setting at 12.89kV.

The 351S breaker has a risk of nuance tripping. The forecasted demand is higher than

the breaker setting at 12.89kV.

There is no change in the risk of nuance tripping. The E-House breaker has the highest
liklihood of nuance tripping, and it will be the one that we look at first. All the analysis from
this point will use the lowest recorded voltage.

Removing Protection Coordination

The simpliest option is to remove the coordination from all the breakers in this part of the
system and have them overlap. This doesn't increase the amount of the system that would
be affected during an event, and will give the space needed to start-up North while the new
transformers are installed.

To do this we would verify that the 12.47kV cabling and bus work can accomodate the added
current, and then move all protection settings into the area between the frequent/infrequent
fault damage curve of the existing transformer.

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

26 of 36 2023-12-11, 4:33 p.m.

We may still have a challenge at the extremes of the transformer damage curve as shown
here.

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

27 of 36 2023-12-11, 4:33 p.m.

This is the abolsute maximum that we can use for the pick-up on the protection devices.

Determine if the maximum demand is lower than the edge of the damage curve.

mva_tx_max = math.sqrt(3) * voltage * (69/12.47) * 192

print('The absolute maximum, at low system voltage, that the protection can be set at represents '

if mva_tx_max > df_MainA_analysis['Forecast Demand'].max() + max_demand:

print('This demand is higher than the maximum forecasted demand.')

elif mva_tx_max > df_MainA_analysis['Forecast Demand'].max():

print('This demand is higher that the forecasted demand, but there may still be issues when starti

The absolute maximum, at low system voltage, that the protection can be set at repre

sents 22.62MVA.

This demand is higher than the maximum forecasted demand.

Based on the above, the absolute maximum value for the pickup is higher than the
Calculated Maximum Demand. From this we can use the max demand to calculate
reasonable starting values for the temporary protection settings.

Calculate reasonable max pickup settings

pickup_safety_factor = 0.000 # 5%

pickup_1247 = max_demand_current * (1+pickup_safety_factor)

pickup_69 = (12.47/60) * max_demand_current * (1+pickup_safety_factor)

print(pickup_1247)

print(pickup_69)

new_351S_pickup = pickup_69 * 1.05

new_751T_pickup = pickup_1247 * 1.1

In []:

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

28 of 36 2023-12-11, 4:33 p.m.

new_EHouseA_pickup = pickup_1247

#print(new_351S_pickup)

#print(new_751T_pickup)

#print(new_EHouseA_pickup)

print('The max demand current on the 12.47kV system is projected to be ' + str(round

print('The temporary pickup values are proposed to be \n - ' + str(round(new_351S_pickup

845.3662710819922

175.69529000654072

The max demand current on the 12.47kV system is projected to be 845A, and reflected

on the 69kV system it will be 176A.

The temporary pickup values are proposed to be

 - 184.5A for the primary 351S,

 - 929.9A for the 751T,

 - 845.37A for the E-House A Main.

These new values have a risk of pre-maturely aging the transformer, especially during
periods when the temperature and demand are high. We recommend increased oil testing,
and continuous temperature monitoring through the building automation system, along
with active alarming, and/or automatic demand response during high load periods.

These changes may need to be coordinated with the local utility to ensure that the new 69kV
breaker settings don't affect any upstream protection devices.

These new settings would look something similar to this:

The highlighted point is the calculated maximum demand, reflected to a 69kV base, for 5
minutes.

This is TCC has very poor coordination at the pickup, essentially all at the damage curve for

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

29 of 36 2023-12-11, 4:33 p.m.

the transformer. On warm days this will represent an overload, as such it is critical that oil
temperatures are monitored.

Forecasting beyond Q1 into Q2'24
The above analysis is only for Q1'23, extending further into 2023 is difficult without better
demand forecasting models, however, there is a benefit to extend the forecasting model that
we have developed to determine if there is going to be possible challenges if there are
delays.

As we will be getting into the warmer part of the year, we will check to ensure that there isn't
a requirement to derate the transformer for this part of the analysis.

analysis_period_str = '2023-04-01 00:00:00'

analysis_period_end = '2023-06-30 23:45:00'

df_MainA_analysis = df_conditioned.loc[analysis_period_str:analysis_period_end]['LUCID01.PRIMARY_SWG

df_MainA_analysis['Forecast Demand'] = df_MainA_analysis['Apparent Power'] * load_increase

df_MainA_analysis['Difference'] = df_MainA_analysis['Apparent Power'] - df_MainA_analysis

largest_load = df_MainA_analysis['Difference'].max()

max_demand = df_MainA_analysis['Forecast Demand'].max() + largest_load

df_weather = df_weather = weather[analysis_period_str:analysis_period_end].copy()

df_weather['24h_temp'] = df_weather['temp'].rolling(24).mean()

fig, ax1 = plt.subplots(figsize=(10,8))

plt.plot(df_weather.index, df_weather['temp'], color='red', label='Temperature')

plt.plot(df_weather.index, df_weather['24h_temp'], color='black', label='24h Average Temperature'

plt.plot(df_MainA_analysis.index, df_MainA_analysis['Apparent Power']/1000, label='2023 Load MVA'

plt.legend()

plt.title('Hourly Temperature - Casa Grande, AZ')

plt.xlabel('Time')

plt.ylabel('deg C')

plt.savefig('report/images/hourly_temperature_casa_grande_2023_Q2.png', format='png'

plt.show()

print('The max temperature is ' + str(df_weather['temp'].max()) + ' degC, ' + 'with the highest 24h av

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

30 of 36 2023-12-11, 4:33 p.m.

The max temperature is 42.0 degC, with the highest 24h average being 34.0 degC.

Starting in May it appears that the rolling average temperature starts to increase above 30C.

This leads to a derating to 9.6MVA base and 13.44MVA with fans.

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

31 of 36 2023-12-11, 4:33 p.m.

XF_derated_fan = 13448

fig, (ax1, ax2) = plt.subplots(2,1,figsize=(10,8))

ax1.plot(df_MainA_analysis.index, df_MainA_analysis['Forecast Demand'] + df_MainA_analysis

ax1.set_xlabel('Time')

ax1.set_ylabel('kVA')

ax1.set_ylim(plot_y_min,plot_y_max_fans)

ax1.axhline(y=XF_derated_fan, linestyle='-', label='Temperature Derated Value')

ax1.legend()

ax2.plot(df_MainA_analysis.index, df_MainA_analysis['Forecast Demand'], color='red',

ax2.set_xlabel('Time')

ax2.set_ylabel('kVA')

ax2.set_ylim(plot_y_min,plot_y_max_fans)

ax2.axhline(y=XF_derated_fan, linestyle='-', label='Temperature Derated Value')

ax2.legend()

plt.savefig('report/images/Load_Projection_Q224.png', format='png')

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

32 of 36 2023-12-11, 4:33 p.m.

As you can see above, as the temperature warms up, and assuming that the same YoY
increase from 2023-2023 load values in Q2'24 match those that were calculated from Nov'22
and Nov'23, the existing 10MVA transformer will NOT accomodate the load, and it is an
increase that we don't expect that load shifting will be able to accomodate.

This overload situation will go away when the new transformers are installed.

Additional HVAC load from South and North Campus

These graphs don't take into account the added HVAC load from South or North Campus.
For Phase 1 and South we calculated that the kVA/C over 25C was going to be in the range
of 250 and 300kVA. Including North in this calculation would increase that.

The values above ONLY account for the HVAC load from Phase 1.

For the below calculation we will assume that the North and South HVAC combined will be
similar to the Phase 1 and South that was calculated above.

With that assumption we can calculate what the new HVAC demand, on top of the existing
forecasted load, will be when the weather starts to warm in in Early April.

calculating the hourly demand based on outside temperature.In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

33 of 36 2023-12-11, 4:33 p.m.

MainA_analysis_Q2 = df_MainA_analysis

MainA_analysis_Q2['temp'] = weather['temp']

MainA_analysis_Q2 = MainA_analysis_Q2[MainA_analysis_Q2['temp'].notna()]

MainA_analysis_Q2['HVAC Load'] = np.where(MainA_analysis_Q2['temp'] > 25, (MainA_analysis_Q2

MainA_analysis_Q2['HVAC Load'].max()

print('Based on this analysis there could be up to ' + str(round(MainA_analysis_Q2[

Based on this analysis there could be up to 3.96MVA of additional HVAC load on the s

ystem in Q2'24

C:\Users\jeff\AppData\Local\Temp\ipykernel_15796\199403563.py:7: SettingWithCopyWarn

ing:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/u

ser_guide/indexing.html#returning-a-view-versus-a-copy

 MainA_analysis_Q2['HVAC Load'] = np.where(MainA_analysis_Q2['temp'] > 25, (MainA_a

nalysis_Q2['temp']-25)*temp_warm_analysis['kVA_C'].mean(),0)

fig, ax1 = plt.subplots(figsize=(10,8))

plt.plot(MainA_analysis_Q2.index, MainA_analysis_Q2['Forecast Demand'], color='red',

plt.plot(MainA_analysis_Q2.index, MainA_analysis_Q2['Forecast Demand'] + MainA_analysis_Q2

plt.legend()

plt.title('Hourly Temperature - Casa Grande, AZ')

plt.xlabel('Time')

plt.ylabel('kVA')

plt.savefig('report/images/forecasted_demand-_casa_grande_2023_Q2-withHVAC.png', format

plt.show()

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

34 of 36 2023-12-11, 4:33 p.m.

As can be seen in the graph, the new peak demand is above 25MVA, and is well over 15MVA
most days in later April through to the end of the quarter.

We strongly expect there to be nuance tripping on the 10MVA transformer, along with likely
overload damage, if it is not replaced in Q1'24.

Load Projections with Designed Transformer
Below is a graph showing the expected load projection, without the forecasted HVAC,
compared to a single 24MVA base transformer. The majority of the time it is not expected for
the fans to come on to meet the required demand.

XF_derating_factor = 0.039

XF_base = 10000

XF_fan = 14000

XF_fan_derated = XF_fan * (1-XF_derating_factor)

XF_designed_base = 24000 # Assumed based on the new transformer being purchased.

XF_designed_fan1 = XF_designed_base * 1.33

XF_designed_fan2 = XF_designed_base * 1.66

XF_designed_base_derated = XF_designed_base * (1-XF_derating_factor) # Assumption on the transformer s

XF_designed_fan1_derated = XF_designed_fan1 * (1-XF_derating_factor)

XF_designed_fan2_derated = XF_designed_fan2 * (1-XF_derating_factor)

In []:

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

35 of 36 2023-12-11, 4:33 p.m.

plt.figure(figsize=(10,8))

plt.title('Load Projection With Designed Transformer')

plt.xlabel('Time')

plt.ylabel('kW')

plt.plot (df_MainA_analysis.index, df_MainA_analysis['Forecast Demand'] + df_MainA_analysis

plt.axhline(y=XF_fan_derated, color='red', label='Existing Tranformer ONAF')

plt.axhline(y=XF_designed_base_derated, color='darkblue', label='2 as Designed Tranformer ONAN'

plt.axhline(y=XF_designed_fan1_derated, color='mediumblue', label='2 as Designed Tranformer ONAF1'

plt.legend(loc='upper left')

plt.savefig('report/images/Load_Projection_with_Designed_Transformer.png', format='png'

plt.show()

20231211-RA-2325-Casa_Grande_Load_Flow_Analysis file:///P:/Active/ECS%20Engineering/Lucid/2325-Casa-Grande-Load-F...

36 of 36 2023-12-11, 4:33 p.m.

